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Chiral synthesis of tri-O-methylimbricatine, an etherified
derivative of the starfish alkaloid imbricatine
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A chiral synthesis of tri-O-methylimbricatine (2), the tri-O-methyl derivative of the unique benzyltetrahydroiso-
quinoline alkaloid imbricatine (1) isolated from the starfish Dermasterias imbricata, has been accomplished. As a
result of the synthesis, the correctness of the structure and absolute stereochemistry proposed for imbricatine has
been unequivocally confirmed. © 1998 Elsevier Science Ltd. All rights reserved.
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Imbricatine (1), isolated from the starfish Dermasterias imbricata, is a benzyltetrahydro-
isoquinoline alkaloid responsible for eliciting the unusual “swimming” behavior in the sea
anemone Stomphia coccinea at very low concentrations [1-3]. The structure and absolute
stereochemistry of 1 have been deduced on the basis of spectroscopic analysis, chemical
degradation, and partial synthesis of the benzyltetrahydroisoquinoline substructure [1,2].
Imbricatine (1) is unique in that it is a benzyltetrahydroisoquinoline alkaloid obtained for the
first time from a marine organism; it possesses some structural features (e.g., the carboxyl
group at the 3-position, the 6,8-dihydroxylation pattern, and the aromatic thioether linkage to
the 3-methyl-L-histidine moiety) not previously encountered in this class of alkaloids; and it
exhibits significant antineoplastic activity [1,2].
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The synthesis of the benzyltetrahydroisoquinoline moiety 12 containing a sulfur substituent
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at the 5-position started from the benzyl chloride 4, which was prepared according to the
Y 9 1 R P, 1

procedure reported by us {6]. Coupling reaction of 4 with the organolithium reagent 13
generated in situ from (25)-(+)-2,5-dihydro-3 6—d1meth0xy 2-isopropylpyrazine and LDA in
THF at -78 °C, an application of the “bis-lactim ether” method of Schollkopf [7,8], provided
5 in 75% yield along with its 5-epimer 6 (9% yieid) (Scheme 1). The trans and cis structures
of 5 and 6 were assigned, respectively, on the basis of our precedent [6]. The major isomer
5 was then subjected to hydrolysis with 0.25 N aqueous HCI in MeOH to afford the amino
ester 7 [mp 51-52 °C; [OLJ" -8.9° (¢ 0.92, MeOH)] in 97% yield. The enantiomeric purity of
7 thus obtained was determined to be 96% ee by IH NMR spectroscopy exploiting the chiral
shift reagent Eu(hfc)s.
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Scheme 1. Reagents, conditions, and yields: (a) 13, THF, -78 °C,2 h,-50°C, 18 h, §: 75%, 6: 9%, (b) 0.25 N aq.

HCI, MeOH, tt, 4 h, 97%; (c) 4methoxyphenylacetyl chloride, NapCO3, HoO-benzene, 8-10 °C, 30 min, 96%; (d) 1)
PPSE, CHCl3, reflux, 10 h; 2) NaBHg4, MeOH, -78 °C, 1 h, 81%; (e) LiAlHy, THF, rt, 1.5 h, 91%; (f) (Et0),CO,

m-auEi, EtOH, reflux, 20 h, 98%; (g) 1) (CF3CO»);Hg, anisole, EtOH, n, 16 h; 2) NaBHy, 0 °C, 15 min, 95%.

Condensation of 7 with 4-methoxyphenylacetyl chloride was carried out under Schotten—
Baumann conditions, giving the amide 8 (mp 120-121 °C) in 96% yield. Bischler—Napieral-
ski cyclization of 8 using trimethylsilyl polyphosphate (PPSE) [9,10], followed by NaBH4
reduction in MeOH at —78 °C [11], furnished the 1,3-cis isomer 9 as a sole product in 81%
yield. Although partial racemization (91% ee) was detected in the crude product 9, recrys-
tallization from MeOH readily provided opticaily pure 9 {mp 134-135.5 °C; [(x]f)g +230° (c
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0.29, CHCl3)]. The 1,3-cis structure of 9 was secured from a 5.8% NOE enhancement
observed for the C(1)-proton signal on irradiation of the C(3)-proton signal. In order to
avoid possible epimerization assumed to occur at a later stage, the ester group of 9 was then
reduced with LiAlHy to give 10 (mp 169.5-173.5 °C) in 91% yield, and the resulting OH
group was protected, together with the NH group, as the oxazolidinone 11. Removal of the
sulfur-protecting group of 11 was effected by the literature procedure [12,13] with a slight
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With the benzyltetrahydroxsoqumohn portlon possessing the thiol group at the 5-position

in hand, we next investigated the application to 12 of our route {4,5] for the synthesis of 5-
arylthio-3-methyi-L-histidines (3a,b). Treatment of 12 with the aidehyde 24 [4,5] in DMF in
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the presence of NaH provided the corresponding thioether i4, which was then converted into
the alcohol 15 (mp 249-250 °C) by NaBH4 reduction (Scheme 2). Chlorination of 15 with
SOCi, foiiowed by a coupling reaction with the enantiomeric organolithium reagent enf-13
afforded 16 and 17 in 58% and 34% yields, respectively. The stereochemical assignments to
16 and 17 were based on comparison of the chemical shifts of their C(2)-protons. In CDCl3,
the C(2)-proton signal of 16 appeared at 8 3.78, whereas that of 17 at & 3.93. The C(2)-
protons of the trans isomers 25a.b are known to resonate at higher field by 0.12-0.13 ppm
than those of the cis isomers 26a,b, respectively, because of the shielding effect induced by
the imidazole ring [5]. Therefore, 16 and 17 were assigned the trans and cis structures,
respectively. At present, however, we have no answer to the observed low diastereo-
selectivity (1.7 : 1) in the formation of 16 and 17, compared with the cases of 25a,b and
26a,b (25a:26a =14 :1;25b:26b =17 : 1) in a similar alkylation of ent-13 [5].
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Scheme 2. Reagents conditions, and yields: (a) 24, NaH, DMF, 100 °C, 3 h, 68%; (b) NaBHy4, MeOH, rt, i h, 80%; {c)

13 SOCls, 11, 1 h: 2) enz-13, THF, -78 °C, 2 h, =50 °C, 14 h, 16: 58%, 17: 34%; (d) (.25 N aq. HC], MeOH, 25 h,

1 O, Ty, 1 In, L[ Eéfi=2S, Liax, 1, 16: 58% vieun

91%; (e) 1) 6 N aq. HCI, 100 °C, | h; 2) 2 N aq. NaOH MeOH, 80——85 °C, 60 h 3) 10% methdnohc HCl, reﬂux 7 h,
73%:; (f) (Boc)0, CHCl3, 1t, 6 h, 91%; (g) 1) (COCl)z, DMSO, CH»Cl3, -78 °C, 1 h; 2) Ei3N, 81%; (h) I, KOH,
= = -~ . TT e annr cNil7 vo 700L.

MeOH, 0 °C, 5 h, 71%; (i) CF3CO2H, CHyCly, rt, 1.5 h, 83%; (j) 1) 3 N aq. HCI, reflux, 1 h; 2) Dowex 50W-X8, 78%;
(k) 1) 12% methanolic HCI, reflux, 3 h; 2) (Boc)20, E3N, CHCly, t, 6 h; 3) CsF-alumina, Mel, CH3CN, 1, 1 h, 30%.
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The trans bis-lactim ether 16 was then hydrolyzed MeO MeO
with 0.25 N aqueous HCl in MeOH to give the amino ~ Me =N, Me <\'= Nl
ester 18 in 91% yield. Conversion of 18 into the QNI-(N=2 2< QNIW N=2 ?
amino aicohol 19 was achieved in 3 steps via acid NTTs OMe NTTs OMe
hydrolysis of the ester group, alkaline hydrolysis of AP 25ab Ar 2%6a.b

the oxazolidinone moiety, and esterification of the

carboxy group. After protection of the amino func- aa=l 1| ba=L T >
- . = 2 ‘s . N . . 2 . . ~ Y
tions in 19 with (Boc)20, Swern oxidation [14] of > e

the hydroxymethyl group at the 3-position of the resuiting N-blocked product 20 and
subsequent alkaline iodine oxidation [15] of the aldehyde 21 in MeOH yielded the dimethyl
ester 22 [[a]3’ ~15.3° (¢ 0.50, CHCI3)]. The IR (CHCI3), IH NMR (CDCl3), and mass spectra
and TLC moblhty (three solvent systems) of 22 thus obtained were found to be virtually
identical with those of authentic 22 [[a]5 ~13.5° (¢ 0.085, CHCI3)] derived from natural
imbricatine (1) in 30% overall yield through methyl esterification, protection with (Boc)20,
and O-methylation with CsF-alumina and Mel [16] (Scheme 2). Finally, N-deprotection of
22 with CF3CO2H followed by acid hydrolysis of the resulting amino ester 23 afforded tri-
O-methylimbricatine (2) [[a]} +62.2° (¢ 0.67, MeOH)]. Unfortunately, however, we were
unable to accomplish exhaustive O-demethylation of 2 to give 1.

In conclusion, the structure and absolute stereochemistry of the starfish alkaloid
imbricatine have now been unequivocally established to be those in formula 1, as a result of
the chiral synthesis of tri-O-methylimbricatine (2).
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